A Reflection on the Clustering in Corpus Linguistics

Akitaka Yamada,
Georgetown University
ay314@georgetown.edu
1 Introduction

Topic: to discuss the metric selection in corpus linguistics.

In corpus linguistics, we often classify competing expressions. Given the following barplots, for example, we sometimes ask which expression is *the closest* to the expression A.
2 Hierarchical Clustering
Hierarchical agglomerative clustering is a frequently used explorative statistical method in corpus linguistics (Baayen 2008; Gries 2013; etc.).

Metric selection plays a pivotal role in this analysis.
Question:
How do we measure the distance or the similarity among barplots?

An important caveat:
1. No absolute answer.
2. A choice of one measure over the others reflects the researcher’s subjective attitude/perspective toward the data and the analysis.

Nevertheless:
Considering the nature of the corpus data, we can, at least, say the following statements:

Main claims: (i) our familiar Euclidean distance is not the only choice; and, in most cases, not the best choice.
(ii) The Hellinger distance is an underdiscussed but promising alternative.
(iii) The information lost in clustering can be recovered by a good visualization.
3 Information Geometry
3 Information geometry

Distribution of verbs

As a warm-up discussion, let us consider the distributional property of the prob. distributions!

Example:
1. We are interested in the use of **Present Perfect**.

2. How is it different from **the Past** and **the Present**?

Suppose you have searched for these three forms, using COCA.

3. As a result, you have got the following **relative frequencies**:

4. In order to understand the nature of the Euclidean distance, let us put these verbs in the **three** dimensional space!
3 Information geometry

Distribution of verbs

Where are those verbs found in COCA corpus?

1. In the case of the verb achieve (0.4, 0.3, 0.3):

![Diagram showing the distribution of the verb achieve in different tenses.]
Where are those verbs found in COCA corpus?

1. In the case of the verb achieve (0.4, 0.3, 0.3):
2. Can verbs distribute anywhere in this 3D space? No, verbs **cannot appear at random**!

They can only be found within the shaded triangular region because of the following constraints:

\[p_i \geq 0 \quad \sum p_i = 1 \]
3 Information geometry

Distribution of verbs

Where are those verbs found in COCA corpus?

1. In the case of the verb achieve (0.4, 0.3, 0.3):
2. Can verbs distribute anywhere in this 3D space?
 No, verbs cannot appear at random!
 They can only be found within the shaded triangular region because of the following constraints:
 \[p_i \geq 0 \quad \sum p_i = 1 \]

3. 266 most frequently used English verbs in COCA are plotted in this region:

- ACHIEVE
- SMILE
- ANNOUNCE

![Diagram showing the distribution of verbs in COCA corpus](image)
4 the Euclidean distance and the Hellinger distance
How do we measure the distance between the two dots?

1. Definition:

\[D_E(x, y) = \sqrt{\sum_j |x_j - y_j|^2} \]

2. Geometrical interpretation: the straight line
4 Distance between the Euclidean distance and our intuition

Dependence on the dominant dimension

The Euclidean distance depends too much on the most dominant dimension:

Example: the difference between *smile* and *announce*

1. Preponderance of the past tense conceals the otherwise detectable contrast.
2. We want to say they are quite different in other dimensions.
3. which is totally ignored by the Euclidean distance, because of the constraint $\sum p_i = 1$.

Even though you have a sharp contrast, the different only amount to 0.05.
Dependence on the dominant dimension

The Euclidean distance depends too much on the most dominant dimension:

Example: the difference between smile and announce

1. Preponderance of the past tense conceals the otherwise detectable contrast.
2. We want to say they are quite different in other dimensions.
3. Which is totally ignored by the Euclidean distance, because of the constraint $\sum p_i = 1$.

The meaning of 0.05 distance is different!

Even though you have the same proportion, the different only amount to 0.25.
4 Distance between the Euclidean distance and our intuition

The Hellinger distance (philosophy)

The Euclidean distance depends too much on the most dominant dimension:

Let’s listen to the voice of minorities!!

1. What we want: putting more emphasis on the minorities

2. Transform each bar s.t., the lower bar gets relatively bigger:

3. One of such convex technique is to take the sqrt of each height.

BEFORE

AFTER
5 Example 1: English Tense and Aspect system
5 Example 1: Tense and Aspect in English

Let us see how the Hellinger distance **disagrees** with the Euclidean distance.

1. **Dendrogram** does not help us a lot.
2. **Scatterplot** does.
5 Example 1: Tense and Aspect in English

Let us see how the Hellinger distance **disagrees** with the Euclidean distance.

1. **Dendrogram** does not help us a lot.

2. **Scatterplot** does.

3. This is why the Euclidean distance is not appealing in corpus linguistics.

4. Important caveat: The Euclidean distance **does** give us a perspective.

5. Our choice reflects our **subjective** attitude/perspective toward the data.

6. It is good to **compare** results!

<table>
<thead>
<tr>
<th></th>
<th>Euclidean</th>
<th>Hellinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commonality</td>
<td>As for the extreme cases, they have similar opinions.</td>
<td></td>
</tr>
<tr>
<td>Emphasis</td>
<td>Dominant dimension</td>
<td>Dominant & minor dimension</td>
</tr>
<tr>
<td>Classification</td>
<td>(i) Present (ii) Past (iii) Neither</td>
<td>(i) Present (ii) Past (iii) Present Perfect</td>
</tr>
<tr>
<td>Interpretability</td>
<td>Not easy</td>
<td>Quite intuitive</td>
</tr>
</tbody>
</table>
5 Example 1: Tense and Aspect in English

Multifaceted thinking

1. **Robustness**: Classification that both approaches agree on. **Prototypes** that hate PP.

Example:

(1) a. when good things happen, we are certain fortune *has smiled* on us.

b. Though his expression is serious now, the crinkles at the corners of his eyes make me think he *has smiled* a lot. He looks kind.

<table>
<thead>
<tr>
<th>Euclidean</th>
<th>Hellinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commonality</td>
<td>As for the extreme cases, they have similar opinions.</td>
</tr>
<tr>
<td>Emphasis</td>
<td>Dominant dimension</td>
</tr>
<tr>
<td>Classification</td>
<td>(i) Present</td>
</tr>
<tr>
<td></td>
<td>(ii) Past</td>
</tr>
<tr>
<td></td>
<td>(iii) Neither</td>
</tr>
<tr>
<td>Interpretability</td>
<td>Not easy</td>
</tr>
</tbody>
</table>
5 Example 1: Tense and Aspect in English

Multifaceted thinking

1. **Robustness**: Classification that both approaches agree.
 - Prototypes that **hate** PP.
 - announce, lay, scream
 - cry, lean, shake
 - hit, nod, smile
 - laugh, say, stare

2. **Classification w.r.t. three T/A system**: Prototypes that **love** PP.
 - accumulate, demonstrate, expand
 - achieve, develop, improve
 - change, double, increase
 - contribute, evolve, succeed

<table>
<thead>
<tr>
<th>Euclidean</th>
<th>Hellinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commonality</td>
<td>As for the extreme cases, they have similar opinions.</td>
</tr>
<tr>
<td>Emphasis</td>
<td>Dominant dimension</td>
</tr>
<tr>
<td>Classification</td>
<td>Dominant & minor dimension</td>
</tr>
<tr>
<td>Classification (i) Present (ii) Past (iii) Neither</td>
<td>(i) Present (ii) Past (iii) Present Perfect</td>
</tr>
<tr>
<td>Interpretability</td>
<td>Not easy</td>
</tr>
<tr>
<td>Interpretability</td>
<td>Quite intuitive</td>
</tr>
</tbody>
</table>
5 Example 1: Tense and Aspect in English

Multifaceted thinking

1. **Robustness**: Classification that both approaches agree.
 Prototypes that *hate* PP.
 - announce, lay, scream
 - cry, lean, shake
 - hit, nod, smile
 - laugh, say, stare

2. **Classification w.r.t. three T/A system**:
 Prototypes that *love* PP.
 - accumulate, demonstrate, expand
 - achieve, develop, improve
 - change, double, increase
 - contribute, evolve, result
 - succeed

<table>
<thead>
<tr>
<th>Previous theories</th>
<th>(Portner 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Indefinite past theories</td>
<td></td>
</tr>
<tr>
<td>(B) Perfect state theories</td>
<td></td>
</tr>
<tr>
<td>(C) Extended now theories</td>
<td></td>
</tr>
</tbody>
</table>
So far, we have seen an example in which we only have three dimensions (= past, present and pp).

What about the data with higher dimensions?

Example 2 is a case-study in which we have 112 dimensions.

Take-home lessons
1) Good visualization helps us understand the distribution.

2) If compared with the Hellinger distance, the Euclidean distance gives us a result in which the highest dimension is appreciated too much.

3) Comparison between the two metrics gives us a better understanding of the data.

Questions are welcome! But let me first conclude this talk …
Conclusion

In this presentation:
I have demonstrated
(a) how we **compare the results** from different metrics
and
(b) how we should **connect** the results **with** the findings in the theoretical linguistics.

In so doing, …

Main claims: (i) our familiar **Euclidean distance** is not the only choice; and, in most cases, not the best choice.
 (ii) The **Hellinger distance** is an underdiscussed but promising alternative.
 (iii) The information lost in clustering can be recovered by a good visualization.

- Good comparison of the matrices/visualization
- Better understanding of the data!
Thank you very much for listening!!