Phase-based prosody: evidence from pitch-accent distribution in the Japanese verbal domain

Akitaka YAMADA

Georgetown University
North East Linguistics Society 2018 (NELS 49) @ Cornell University
Session B (RPCC Multi-Purpose Room 218)
Oct 05, 2018

This handout is also available online (https://www.akitaka-yamada-georgetown-university.com/publications).

Abstract

Research on the Japanese phonology/syntax interface has claimed that the CP phase coincides with a significant intonational boundary and have claimed that prosody is computed phase-by-phase (Ishihara 2003, 2004; Kitagawa 2005; Dobashi 2018; cf. Match Theory, Selkirk 2011 and Ito and Mester 2013). If CP receives a meaningful intonation contour, a natural question that arises is — what about other phases? Within the framework of Distributed Morphology (Halle 1990; Halle and Marantz 1993; Embick and Noyer 2001), the present study proposes that (i) phase-based prosody also holds in the verbal domain; but (ii), in Tokyo Japanese, the phase domain is the sister node of T, not v; and (iii) the pitch-accent in this syntactic domain is modified by phonology and morphology, resulting in superficial complexity.

1 Introduction

Japanese phonology/syntax interface:
1. the CP phase coincides with a significant intonational boundary

Verbal domains: In Tokyo Japanese, each verbal domain needs to receive a high pitch contour (L stands for the low pitch while H stands for the high pitch):

(1) Four syllable verbs

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>ra.</td>
<td>ta.</td>
<td>me.</td>
<td>r- u.</td>
<td></td>
</tr>
<tr>
<td>renew</td>
<td>-PRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘(I) renew (something).’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Three syllable verbs

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>H</th>
<th>H</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>ra.</td>
<td>ta.</td>
<td>me.</td>
<td>r- u.</td>
</tr>
<tr>
<td>renew</td>
<td>-PRS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘(I) renew (something).’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This high pitch contour reflects the verbal domain only and is not affected by subsequent C-elements. For example, sentence-final particles such as -yo and -ne or the quotative particle -to never extend the already-created high-pitch region, as illustrated below.1

(3) C-elements and high pitch contour

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>ra.</td>
<td>ta.</td>
<td>me.</td>
<td>r- u.</td>
<td></td>
</tr>
<tr>
<td>renew</td>
<td>-PRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘(I) renew (something).’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>H</th>
<th>H</th>
<th>{L/*H}</th>
<th>{L/*H}</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>ra.</td>
<td>ta.</td>
<td>me.</td>
<td>r- u.</td>
<td>-yo</td>
<td>-ne</td>
</tr>
<tr>
<td>renew</td>
<td>-PRS</td>
<td>-SFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘(I) renew (something); YO.’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1The meaning of the sentence final particles are not relevant for the current discussion. In the gloss, YO and NE are used to refer to their expressive meanings.
Claims:

(4) a. phase-based prosody also holds in the verbal domain
 b. in Tokyo Japanese, the phase domain is the sister node of T, not v
 c. based on this syntactically defined domain, phonology and morphology modify the pitch contour, resulting in superficial complexity

2 Data

2.1 Two pitch-accent patterns

With respect to the position of the falling pitch, Japanese verbs have been traditionally classified into (i) non-accented verbs and (ii) accented verbs (Kubozono 2011; Kawahara 2015).

(5) Disyllabic verbs

a. Non-accented verb
 \[
 [L \ H \ H] \ L \ L \ L
 \]
 [ha. re. r-u.] yo. ne. to.
 become swollen
 \`
 \`that (it) becomes swollen; YO + NE.\`

b. Accented verb
 \[
 [L \ H \ L] \ L \ L \ L
 \]
 [ha. re. r-u.] yo. ne. to.
 clear up
 \`
 \`that (it) clears up; YO + NE.\`

(6) Trisyllabic verbs

a. Non-accented verb
 \[
 [L \ H \ H \ H] \ L \ L \ L
 \]
 [na. ku. na. r-u.] yo. ne. to.
 pass away
 \`
 \`that (he) passes away; YO + NE.\`

b. Accented verb
 \[
 [L \ H \ H \ L] \ L \ L \ L
 \]
 [he. da. ta. r-u.] yo. ne. to.
 be distant
 \`
 \`that (it) is distant; YO + NE.\`

(7) Four syllable verbs

a. Non-accented verb
 \[
 [L \ H \ H \ H \ H] \ L \ L \ L \ L
 \]
 [me. st. a. ga. r-u.] yo. ne. to.
 eat. HON\textsubscript{i}
 \`
 \`that (he = honorified) eats; YO + NE.\`

b. Accented verb
 \[
 [L \ H \ H \ H \ L] \ L \ L \ L \ L
 \]
 [a. ra. ta. me. r-u.] yo. ne. to.
 renew
 \`
 \`that (I) renew; YO + NE.\`

The accented verb has a falling pitch before the closing bracket whilst the non-accented verb has a falling pitch after the closing bracket. In the accented verb, the both edges of the bracketed region must be assinged a low pitch accent.

Monosyllabic verbs are exactly the same except for the fact that the accented verb cannot have low pitch accents at both edges — if low pitch accents appear at the both edges, a high pitch accent is never assigned within the verbal domain! — and the left edge is assigned a high pitch accent.

(8) Mono-syllabic verbs

a. Non-accented verb
 \[
 [L \ H] \ L \ L \ L
 \]
 [na. r-u.] yo. ne. to.
 ring
 \`
 \`that (it) rings; YO + NE.\`

b. Accented verb
 \[
 [H \ L] \ L \ L \ L
 \]
 [na. r-u.] yo. ne. to.
 become
 \`
 \`that (it) becomes; YO + NE.\`

2
2.2 Research questions

(10) Research questions

a. Which functional projection is the bracketed region? (e.g., TP? PolP? Asp? vP?)

b. Based on the syntactically-defined domain (= the bracketed region), how do we predict the pitch contour?

2.3 More data 1: Bracketed region = TP?

There are some suffixes (heads of some functional projections) that makes us believe that the bracketed regions are TPs.

2.3.1 Aspectual suffixes

- hazimer- ‘start/begin,’ tuduker- ‘continue,’ and owar- ‘finish’ neutralize the contrast between the non-accented and accented verbs.

(11) Disyllabic verbs

a. Non-accented verb

\[
\begin{array}{c}
L H H H H \{L/*H\} \\
ha. re. ha. zi. me. r-u. \\
\end{array}
\]

‘that (it) starts becoming swollen; YO.’

b. Accented verb

\[
\begin{array}{c}
L H H H H \{L/*H\} \\
ha. re. ha. zi. me. r-u. \\
\end{array}
\]

‘that (it) starts clearing up; YO.’

(12) Monosyllabic verbs

a. Non-accented verb

\[
\begin{array}{c}
L H H H \{L/*H\} \\
na. ri. ha. zi. me. r-u. \\
\end{array}
\]

‘that (it) starts ringing; YO.’

b. Accented verb

\[
\begin{array}{c}
L H H H \{L/*H\} \\
ha. re. ma. s-u. \\
\end{array}
\]

‘that (it) starts becoming; YO.’

2.3.2 Addressee-honorific markers

- The addressee-honorific marker -mas appears also in the vP-periphery (cf. Belletti 2004) and triggers the neutralization.

(13) Disyllabic verbs

a. Non-accented verb

\[
\begin{array}{c}
L H H \{L/*H\} \\
ha. re. ma. s-u. \\
\end{array}
\]

‘that (it) becomes swollen; YO; polite.’

b. Accented verb

\[
\begin{array}{c}
L H H \{L/*H\} \\
ha. re. ma. s-u. \\
\end{array}
\]

‘that (it) clears up; YO; polite.’
Monosyllabic verbs

a. Non-accented verb

\[
\begin{array}{c}
\text{ring} \quad \text{A-HON} \\
\{L/\text{H} \} \quad \text{PRo SFP. QUO.}
\end{array}
\]

‘that (it) rings; YO; polite.’

b. Accented verb

\[
\begin{array}{c}
\text{become} \quad \text{A-HON} \\
\{L/\text{H} \} \quad \text{PRo SFP. QUO.}
\end{array}
\]

‘that (it) becomes; YO; polite.’

2.3.3 Tense (the present tense)

- What has been called the present tense morpheme \(-u\) respects the lexical difference.

2.3.4 Interim summary

- Neutralization: elements in the vP periphery neutralize the lexical difference.
- Bracketed region: it looks like a TP ... BUT

2.4 More data 2: Bracketed region = PolP?

Other suffixes (heads of some functional projections) suggest that the bracketed region is the PolP.

2.4.1 Tense (the past tense)

- The past tense suffix does respect the lexical difference but, in the accented verb, the low pitch accent is assigned not only to the last mora but also to the penultimate mora in this domain.

(17) Disyllabic verbs

a. Non-accented verb

\[
\begin{array}{c}
\text{become} \quad \text{PRo SFP. QUO.}
\end{array}
\]

‘that (it) became swollen; YO.’

b. Accented verb

\[
\begin{array}{c}
\text{become} \quad \text{PRo SFP. QUO.}
\end{array}
\]

‘that (it) cleared up; YO.’

(18) a. * \[
\begin{array}{c}
\text{become} \quad \text{PRo SFP. QUO.}
\end{array}
\]

‘that (it) cleared up; YO.’

b. * \[
\begin{array}{c}
\text{become} \quad \text{PRo SFP. QUO.}
\end{array}
\]

‘that (it) cleared up; YO.’
• The same pattern is observed in trisyllabic, four syllable and monosyllabic verbs.

(19) Trisyllabic verbs

a. Non-accented verb

[L H H H H] L L

pass away -PST SFP. QUO.

'that (he) passed away; YO.'

b. Accented verb

[L H H L L] L L

be distant -PST SFP. QUO.

'that (it) was distant; YO.'

(20) Four syllable verbs

a. Non-accented verb

[L H H H H H] L L
[me. si. a. ga. ? -ta.] yo. to.

eat.Š-HON -PST SFP. QUO.

'that (he = honorified) ate; YO.'

b. Accented verb

[L H H L L L] L L
[a. ra. ta. me. -ta.] yo. to.

renew -PST SFP. QUO.

'that (I) renewed; YO.'

(21) Monosyllabic verbs

a. Non-accented verb

[L H H] L L

ring -PST SFP. QUO.

'that (it) rang; YO.'

b. Accented verb

[L H H H] L L

become -PST SFP. QUO.

'that (it) became; YO.'

2.4.2 Negation (present)

• The negation in the present tense shows the same pattern. The accented verb and the non-accented verb differ

(22) Monosyllabic verbs

a. Non-accented verb

[L H H] L L

ring -NEG -PRS SFP. QUO.

'that (it) does not ring; YO.'

b. Accented verb

[L H H H] L L

ring -NEG -PRS SFP. QUO.

'that (it) does not become; YO.'

Notes: -i as a tense morpheme
This view is supported by the following observations:

(23) Exclamatives

a. [] exist-can-NEG-PRS

exist-can-NEG

'(it) is impossible.'

b. [] exist-can-NEG

exist-can-NEG

'Impossible!'

(24) The complement of soo

a. [] soo-des-u.

exist-can-NEG-PRS hear-COP HONx-PRS

'I heard that (it) is impossible.'

b. [] soo-des-u.

exist-can-NEG seem-COP HONx-PRS

'(it) seems impossible.'
2.4.3 Negation (past)

- Japanese exhibits the do-support (the be-support) at T, when there is a negation. The inserted element is ar ‘be’ or one of its allomorphs (e.g., (k)aʔ).
- The past tense morpheme -ta only falls under the high-pitch region iff there is no do-support inserted at T, suggesting a correlation with the post-syntactic Lowering.

(25) Monosyllabic verbs

a. Non-accented verb

<table>
<thead>
<tr>
<th>TP</th>
<th>vPolp</th>
<th>L</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>L</th>
<th>L</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>na.</td>
<td>ri.</td>
<td>ma.</td>
<td>s-e.</td>
<td>n</td>
<td>de.</td>
<td>si.</td>
<td>-ta.</td>
</tr>
<tr>
<td>ring</td>
<td>-NEG</td>
<td>COP</td>
<td>-PST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‘that (it) did not ring’

b. Accented verb

<table>
<thead>
<tr>
<th>TP</th>
<th>vPolp</th>
<th>L</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>L</th>
<th>L</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>na.</td>
<td>ri.</td>
<td>ma.</td>
<td>s-e.</td>
<td>n</td>
<td>de.</td>
<td>si.</td>
<td>-ta.</td>
</tr>
<tr>
<td>become</td>
<td>-NEG</td>
<td>COP.HONa</td>
<td>-PST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‘that (it) did not become; YO + NE.’

- The presence of an addressee-honorific marker causes a morphological change at Pol and T (Yamada 2018a). But the pitch distribution respects the pattern in (25), especially in (25b). The past tense morpheme is ‘far away’ from the relevant high-pitch region.
- With the addressee-honorific marker, the lexical difference is neutralized.

(26) Monosyllabic verbs

a. Non-accented verb

<table>
<thead>
<tr>
<th>TP</th>
<th>vPolp</th>
<th>L</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>L</th>
<th>L</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>na.</td>
<td>ri.</td>
<td>ma.</td>
<td>s-e.</td>
<td>n</td>
<td>de.</td>
<td>si.</td>
<td>-ta.</td>
</tr>
<tr>
<td>ring</td>
<td>-HONa</td>
<td>-NEG</td>
<td>COP.HONa</td>
<td>-PST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‘that (it) did not ring; polite’

b. Accented verb

<table>
<thead>
<tr>
<th>TP</th>
<th>vPolp</th>
<th>L</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>L</th>
<th>L</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>na.</td>
<td>ri.</td>
<td>ma.</td>
<td>s-e.</td>
<td>n</td>
<td>de.</td>
<td>si.</td>
<td>-ta.</td>
</tr>
<tr>
<td>become</td>
<td>-HONa</td>
<td>-NEG</td>
<td>COP.HONa</td>
<td>-PST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‘that (it) did not become; Polite.’

2.4.4 Interim summary

(27) Interim summary

a. Neutralization: elements above vP periphery respect the lexical difference of the verbs

b. Bracketed region: it looks like a PolP

Lexical difference Neutralized Neutralized Not neturalized

3 Analysis

- From the data given above, the following statement seems uncontroversial; n.b., it is known that this also holds in the other lexical domain (i.e., the nominal domain).

(29) Hypothesis 1 (Single-pitch contour hypothesis): In Tokyo Japanese, the verbal prosodic domain must form a single high-pitch region.
3.1 Prosodic domain = PolP

By considering that what is known as the present tense morpheme -u is in fact a post-syntactically inserted vowel, we can re-interpret that the bracketed regions in Section 2.3 are all PolPs.

(30) Hypothesis 2 (Phase = PolP): In Tokyo Japanese, the sister node of T is the phase domain, to which the pitch assignment is sensitive.

- One empirical support for the claim that the present tense morpheme -u is in fact a post-syntactically inserted vowel comes from the do-support. Unlike the past tense morpheme -ta, -u never triggers the do-support. If we assume that the do-support is a syntactic operation for the stranded (tense) affix, the lack of do-support suggests that -u is not a bound morpheme present in the narrow syntax.

(31) Do-support

a. Present (affirmative)
 Aruk-, walk-PRS
 '(I) walked.'

c. Present (negative)
 Aruk-ana, walk-NEG
 'I do not walk.'

e. *Aruk-ana₉ kar-u.
 walk-NEG COP-PRS
 'I do not walk (intended).'

b. Past (affirmative)
 Arui-ta, walk-PST
 'I walked.'

d. Past (negative)
 Aruk-ana₉ kat-ta.
 walk-PST COP-PST
 'I did not walk.'

f. *Aruk-ana-ta.
 walk-NEG-PST
 'I did not walk (intended).'

• Is there any empirical evidence to support that PolP is the domain relevant for the phonology/syntax interface? First, in (colloquial) Tokyo Japanese, the target of the ellipsis is the PolP not the vP.

(32) Support 1: Ellipsis

Lucia:
[TP [PolP Iki-mas-en] desi-ta – yo-ne?
go-HON₉ NEG COP.HON₉-PST-SFP-SFP
'Did you not go (to the party)?; y0+ne'

James:
(i) *[vP —] En desi-ta-ne,
NEG COP.HON₉-PST-SFP
'He did not [go to the party]; ne.'

(ii) [PolP —] Desi-ta-ne.
COP.HON₉-PST-SFP
'He did [not go to the party]; ne.'

Second, the target of the soo replacement is also the PolP.

(33) Support 2: soo-replacement

Lucia:
[TP [PolP Iki-mas-en] desi-ta – yo-ne?
go-HON₉ NEG COP.HON₉-PST-SFP-SFP
'Did you not go (to the party)?; y0+ne'

James:
(i) *[vP Soo] en desi-ta-ne.
SO NEG COP.HON₉-PST-SFP
'He did not [go to the party] (intended); ne.'

(ii) [PolP Soo] desi-ta-ne.
SO COP.HON₉-PST-SFP
'He did [not go to the party]; ne.'
3.2 Lowering

A remaining problem is the pitch contour for the tense morphemes (-ta and -i). The pitch assignment in (34a) needs explanation.

(34) Monosyllabic verbs

a. Non-accented verb

\[
\text{[PolP L H H] L L}
\]

[b. Accented verb

\[
\text{[PolP L H L L] L L}
\]

become swollen -PST SFP. QUO. clean up -PST SFP. QUO.

‘that (it) became swollen; YO.’

If the following bracketing is the right one, we wrongly predict that (35a) is the true pitch pattern, not (35b).

(35) a. * [\text{PolP L H } L] L

b. [\text{PolP L H } H] L

become swollen -PST QUO. become swollen -PST QUO.

‘that (it) became swollen; YO + NE.’

-Along with Embick and Noyer (2001), I assume that the Lowering happens post-syntactically, which yeilds the apparent exception in (35b).²
-We’ve seen that the present tense -u is not a bound morpheme in the narrow syntax. On the other hand, -ta is a bound morpheme present in the narrow syntax, because it is involved with a do-support, just like English -ed. Without a negation, it is lowered to the neighboring head (Embick and Noyer 2001).

(36) Hypothesis 3 (Post-syntactic Lowering in Tokyo Japanese):

In Tokyo Japanese,

a. the Lowering comes after the pitch-assignment within the PolP.

b. the Lowering comes before the pitch-assignment to the elements in the CP.

c. Lowered elements receive the pitch accent of the host element.

(37) a. [\text{PolP L H }] A phase is created and spelled out.

\[
\text{[ha. re.]}
\]

to.

d. [\text{PolP L H }] Based on this syntactic domain, the pitch accent is assigned.

\[
\text{[ha. re. -ta. yo. ne. to.]}
\]

to.

e. [\text{PolP L H H }] \text{-}ta receives the same pitch as the adjacent mora,

\[
\text{[ha. re. -ta. yo. ne. to.]}
\]

to which it attaches

d. [\text{PolP L H H }] The low pitch accent is assigned to the remaining

\[
\text{[ha. re. -ta. yo. ne. to.]}
\]

elements.

²The assignment is done so that the following principles are satisfied:

(i) in general, the both edges of the prosodic domain receive the low pitch accent; e.g., %[LH … HL]%.

(ii) for lexical verbs, some have a lexical requirement that %[LH … H]%L is respected, which overrides the principle in (i).

(iii) if the prosodic domain only consists in two mora, %[LL]% is not allowed, so the accented verb should receive the high-pitch at the left edge, i.e., %[HL]%.

(iv) for the elements in the vP-periphery, %[LH … HL]% must be present, which overrides the principle in (ii).

For the formal algorithm for the pitch-accent assignment, see the tableau in Appendix.
The same analysis is applied to the present tense marker *i* with the negation (*a*)*na*.

When we have a do-support in the narrow syntax, the Lowering never happens.

(38) a. \[PolP \]
 \[ha. re. na \]
A phase is created and spelled out.

b. \[PolP L H H \]
 \[ha. re. na \]
Based on this syntactic domain, the pitch accent is assigned.

c. \[\text{C} \ PolP L H H \]
 \[ha. re. na \] -ta. yo. ne. to. \]
The next phase domain is created.

d. \[\text{C} \ PolP L H H \]
 \[ha. re. na \] ka. ? -ta. yo. ne. to. \]
do-support.

e. \[\text{C} \ PolP L H H \]
 \[ha. re. na \] ka. ? -ta. yo. ne. to. \]
The low pitch accent is assigned to the remaining elements.

4 Theoretical implications

- First, the idea of phase-oriented prosodic domain is empirically extended outside the C region. This goes along with the same line of the recent studies on phonology/syntax interface (Ishihara 2003, 2004; Kitagawa 2005; Dobashi 2018).
- Second, the study predicts a typology between v-as-the-phase-head languages and T-as-the-phase-head languages, which should correlate with the prosodic domain formation and the ellipsis/replacement pattern. What counts as a phase is a controversial issue (Chomsky 2000, 2001; Legate 2003, 2014; McGinnis 2005). This analysis hints at the recent movement in the syntax that emphasizes the flexibility of the phaseness, e.g., the dynamic view to the phase as proposed by Bošković (2014).
- Finally, the phonological operations are applied much earlier than are traditionally assumed, or at least in parallel with morphological processes, contributing to a growing body of literature with similar conclusions (Trommer 2001; Richards 2010, 2016, 2017; Yamada 2018b; Rolle, manuscript). For example, especially for the problem of the order of post-syntactic operations in DM framework, see the architecture proposed by Arregi and Nevins (2012).

References

Appendix

(A) General constraints:
 (i) \([\text{phase domain } \ldots HL] \)
 (ii) \([LH\ldots] \text{phase domain} \)

(B) Lexical requirement: \([\text{phase domain } \ldots H] \ L \)

Figure 1: Pitch assignment within the PolP

Lexical difference: An Input-Output Identity constraint (Prince and Smolensky 1993) ensures that roots with lexically assigned accent retain their input accent pattern (for anti-homophony, see, e.g., Ichimura 2006). The lexical contrast in the compound is ignored because of the high priority of the creation of [%LH…HL%] contour in the compound, resulting in the neutralization in (11).

Trisyllabic verbs: As for non-compound trisyllabic verbs, this model predicts, for example, he.da.ta.r-u. (LHHL) ‘is distant’ (accented) and na.ku.na.r-u. (LHHH) ‘passes away’ (non-accented), as in (6), which is exactly how they are pronounced.

The past tense: First, pitch is assigned before the lowering and the lowered element receives the same pitch accent. This results in ha.re.(LH).ta (H) ‘became swollen,’ not *ha.re. (LH) -ta. (L). Second, when we have a negation and thus do-support in the narrow syntax, the lowering does not happen.

The present tense: The present tense does not have a tense morpheme; -u is inserted when the mora structure is created within the PolP. So, neither do-support nor lowering take place, resulting in the difference in pitch contour between (5a) and (5b).